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An investigation is conducted into the determination of t h e  credibility of 

interacting boundary layers in predicting compressible subsonic flows over 

smooth surface imperfections. The case of smooth backward-facing steps is 

considered. The predicted mean flows are compared with those obtained 

using a Navier-Stokes solver. Moreover, the linear 2-D compressible stability 

characteristics of both mean flows are compared. The results show that the 

interacting boundary-layer formulation produces accurate mean flows that 

yield accurate linear stability characteristics, such as growth rates and 

amp1 ificatio n factors. 
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I .  Introduction 

The boundary layers over natural laminar flow components in the 

presence of surface imperfections (e.g., waviness and steps) must accurately 

be computed so that the effect of these imperfections on the stability and 

transition can be evaluated. Moreover, the magnitudes of the imperfections 

under consideration are such that strong viscid-inviscid interaction and small 

separation bubbles are unavoidable. Definitely, solutions to the full 

Navier-Stokes equations can accurately predict such flowfields provided that 

the grid is fine enough so that important flow strtlctures are not smeared by 

the truncation errors o r  artificial dissipation. However, the number of flow 

cases that needs to be investigated is very large, and hence solving the full 

Navier-Stokes equations is a very expensive task. A more economical 

alternative is to solve the interacting boundary-layers equations. 

The purpose of the present paper is to investigate the accuracy of the 

compressible interacting boundary-layer computations and to establish their 

credibility in accurately predicting flows over surface imperfections. 

Specifically, we consider the flow past a flat plate having a smooth 

backward-facing step. Our approach is to compare the results of interacting 

boundary-layer computations with solutions to the Navier-Stokes equations. 

Comparisons are made for the mean-flow profiles as well as the stability 

characteristics, such as, the growth rates and amplification factors of linear 

stability waves. 

11. Mean Flow 

A. Navier-Stokes Solver 

The thin-layer compressible Navier-Stokes equations were solved using 

the well known computer code "ARCZD" which was developed at NASA Ames; 

the version that we acquired from NASA Ames is designated 1.5 GAMMA, 

7/2/85. The code incorporates different methods of solution, all of which are 

implicit in time, and uses second-order central differences in space. We 

2 



selected the method of solution in which the diagonal form of the equations is 

used'. Mixed second- and fourth-order dissipation terms were added 

explicitly and implicitly, and the resulting pentadiagonal system of equations 

were solved directly. 

Velocities are normalized using the freestream velocity U;, lengths are 

normalized using the distance L* from the leading edge of the plate to the 

center of the step, and the temperature, viscosity, and thermal conductivity 

coefficients are normalized using their freestream values c, p;, and K:, 

respectively. Sheared Cartesian grids are used for all the cases analyzed in 

this paper. An example is shown in Fig. 1 for a smooth backward-facing step. 

The equation of the step is 

1 y = T h ( l  + etfc), 

where 

Re is the Reynolds number based on the distance from the leading edge to the 

step center (x  = x*/L* = l ) ,  and /1= 0.332057. The step specified by Eq. (1) was 

originally employed by Smith and Merkin2 who analyzed the incompressible 

mean flow using triple-deck theory. The numerical values used in Fig. 1 are 

Re = lo6 and h = - 0.003. We note that the y-coordinates in Fig. 1 are 

magnified by a factor of 20 relative to the x-coordinates. 

The inflow boundary of the computational domain is located at X N  - 0.06 

(i.e., the plate leading edge x = 0 is included in the domain) and the outflow 

boundary is located at x = 2.0. The top boundary is placed at ye0.4. More 

details about the grid are given in Section IV. 

B. Interacting Boundary Layers 

We developed a code for solving the compressible interacting 

boundary-layer equations. The numerical method is an extension of 

Veldman's method3 to compressible flows. The salient feature of the method 
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is the simultaneous solution of the boundary-layer equations and the inviscid 

flow, which is given by the small disturbance theory of compressible potential 

flow. A similar treatment was presented by Davis4 for subsonic and supersonic 

flows over parabolic humps. For more details about our method we refer the 

reader to Ref. 5. 

The governing equations are the compressible boundary-layer equations. 

In terms of a combination of the Levy-Lees variables and the Prandtl 

transposition theorem, the problem is given by 

25FFI + VF, - a (6 g) + po(F2 - Q )  = 0 
av 

25Ft + V, + F = 0 
~. 

subject to the boundary conditions 

f = O , V = O , Q , = O  at q = O  

f - 1  and Q - + 1  as ~ + O O  

where 

(3) 

(4) 



and C; and C; are the coefficients of the specific heat of the gas at constant 

pressure and volume, respectively. Here per p,, and U, are the edge density, 

viscosity coefficient, and velocity, respectively. The displacement thickness is 

given by 

The interaction law relates the edge velocity U, to the displacement surface. 

Using thin airfoil theory, we obtain 

where 

and ue is the inviscid surface velocity in the absence of the boundary layer, 

which is also determined using thin airfoil theory. After some manipulations, 

the interaction law can be rewritten as 

where 

and the principal values of the Cauchy integrals in Eqs. (14) and (16) are 

assumed. Equations (3)-(8), (13), and (16) are solved simultaneously following 

the procedure of Veldman3. Veldman integrated Eq. (16) by parts to obtain a 

second derivative for x and expressed U, as a linear combination of the values 

of 6 at the nodes. However, we follow Davis and Werle6 and Nayfeh et at5 and 
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perform the integration by parts to eliminate the derivative of x and assume x 
to vary linearly over the differencing intervals, resulting in a second-order 

accurate scheme. The finite-difference scheme used employed a three-point 

upwind differencing formula for the derivatives and a central differencing far 

the 1 derivatives. Upwinding the 4: derivatives stabilizes the numerical method 

in regions of reversed flow (i.e., F<O) .  The system of equations is solved by 

a scheme similar to that employed by Nayfeh et a15. The distribution of the 

mesh points on the steps was chosen in accordance with the triple-deck 

scaling. The lower deck was resolved using a mesh with a variable step size 

in the 1 direction so that a larger number of points could be employed near the 

wall than in the rest of the boundary layer. 

111, Stability Formulation 

We consider the linear quasiparallel two-dimensional stability of 

two-dimensional compressible flows over smooth backward-facing steps. The 

quasiparallel assumption can be justified a posteriori5. The calculated 

wavelengths are the order of the boundary-layer thickness. We superpose a 

small time dependent disturbance on each mean-flow, thermodynamic, and 

transport quantity. Thus, we let 

where q,,,(y) is a two-dimensional basic-state quantity and q(x ,y , t )  is a 

two-dimensional unsteady disturbance quantity. Here, 4 stands for the 

velocity components (u and v), temperature T, pressure p, density p ,  and 

viscosity coefficient p.  Substituting Eq. (18) into the Navier-Stokes equations, 

subtracting the basic-state quantities, and linearizing the resulting equations 

in the q’s, we obtain 

au a - + urn - + - (pmv)  = 0 3P 
ax dy - + P m  ax d t  (19) 

6 



P +- T P 
Pm Tm Pm 
-- -- 

where 

The problem is completed by the specification of the boundary conditions; they 

are 

u = v = T = O  at y = O  (26) 

u , v , T - + O  as y + 0 0  (27 1 

Next, we assume normal-mode solutions of the form 
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where stands for the eigenfunctions of u, v, p,  and T. Using Eq. (28) in E q s .  
(19)-(23), (26), and (27) and dropping the tilde from i, we obtain the eigenvalue 

problem 

iQP iRT v+--- D Trn Dv = - iuu + - 
Trn Prn Trn 

1 D 2 T = - 2 ( y  - l)MmPrDurnDu 2 + - 2i(y - l)aMmPrDurn 2 v 

I I  

Prn Pm (DT,J2 (32) + i( y - l )Mm PrR - p + [ - iPrR R - + c1 - - 2 a 
Prn prn Pm 

u = v = T = O  at y = O  

u ,v ,T- -+O as y + m  

(33) 

(34) 

where 



R = 0 - ciu, (35) 

Equations (29)-(32) can be written as a system of six first-order equations of the 

form 

where 

C T =  {u f lu  v p T DTIT I .  (39) 

The boundary conditions (33) and (34) can be written as 

The system of equations (38) subject to the boundary conditions (40) and 

(41) constitutes an eigenvalue problem. For a given Reynolds number, Mach 

number, and mean-flow profiles, we determine the dispersion relation 

employing a numerical procedure. For the spatial stability problem 

considered here, we specify o and an initial guess for the eigenvalue E. We 

numerically integrate the system (38) from y = ye to y = 0, where ye indicates 

a value of y outside the boundary layer. In performing these calculations we 

used the computer code 'SUPORT' developed by Scott and Watts'. This code, 

which is  based on the method of Gudonov, solves stiff two-point 

boundary-value problems. It uses the Runge-Kutta-Fehlburg scheme to 

integrate the equations and the Gram-Schmidt orthonormalization scheme to 

keep the solution vectors linearly independent. Normally, the first guess of the 

9 



eigenvalue is incorrect and therefore one of the boundary conditions at y = 0 

is not satisfied. Then, a Newton-Raphson scheme is used to iterate on this 

unsatisfied boundary condition and obtain the eigenvalue to the desired 

accuracy. 

Having found the growth rates - a,, we compute the N-factor as 

where R,  corresponds to the Reynolds number at the first neutral point. 

During the course of integration, if we find that N becomes negative we set it 

equal to zero. 

IV. Comparison Between Interacting Boundary Layers and 

Navier-Stokes Results 

In this section solutions for flows over smooth backward-facing steps 

obtained using the Navier-Stokes solver and IBL computations are compared. 

The Mach numbers considered for the comparison are M = 0.5 and M = 0.8. 

Comparisons are made for the mean flows as well as their stability 

characteristics, such as the growth rates and the N-factors. To predict the 

flowfield and its stability accurately, we must choose a proper grid, which is 

fine enough to  capture the important flow structures. The far field boundary 

also plays an important role in the determination of the solution. The 

boundary must be far enough to prevent Contamination of the solution by 

reflection there, especially in the high subsonic Mach number case. 

The gr id used in the IBL calculations has a uniform step size of 

Ax = 0.005 in the streamwise direction and a geometrically stretched grid in 

the q direction . At the wall Ail = 0.05 and the stretching factor is 1.05. The 

edge of the boundary layer is taken at qe = 8.0 . 
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Four grids were used with the Navier-Stokes solver. In grid 1 (136x70), a 

uniform A x  = 0.005 was used in  the range 0.9 I x I 1.1, where strong 

streamwise gradients are expected. For x<O.9 and x >  1.1, Ax is stretched 

geometrically at the rate of 1.05 provided that Ax did not exceed 0.03. If Ax 

exceeded 0.03, a uniform spacing A x  = 0.03 was used. To cover the domain 

-0.06 I x 52.0 ,  136 points were used. The step size in the y direction was 

geometrically stretched between the wall and the top boundary y z 0 . 4  with 

by, = 1 . 5 ~ 1 0 - ~ ,  and the stretching factor was adjusted so that the number of 

points was 70. In grid 2 (136,99), the streamwise distribution of grid points was 

the same as in gr id 1, while the y direction had 99 points with Ay, = 0 . 3 ~ 1 0 - ~ .  

In grid 3 (166x120), the streamwise distribution in  the interval 0.9 I x 22 .0  was 

the same as that in grid 1, but more points were added in the range 

-0.06 I x S 0.9 so that the total number of x-points was 166. The purpose of 

this addition is to obtain a finer grid near the leading edge of the plate. The 

y distribution was also refined so that 120 points were used between the wall 

and the top boundary yz0.4 with Ay, = 0 . 3 ~ 1 0 - ~ .  Grid 4 was the finest grid 

used, where 176 points were used in the x-direction and 153 in  the y-direction. 

In this grid, t he  streamwise distribution of grid points was the same as that in 

grid 1 except that we started with Ax = 0.003 instead of 0.005. The y grid had 

153 points between the wall and the top boundary, which is placed now at 

yz0.8  instead of the 0.4, which was used for the first three grids, and 

Ay, = 0.3~10-~ . 

First we compare the mean-flow characteristics predicted by the IBL code 

with those obtained by the Navier-Stokes code. The friction-coefficient 

distributions on a backward-facing step with h = - 0.003, Re = lo6, and 

Mm = 0.5 are shown in  Fig. 2. The Navier-Stokes results were obtained using 

grids 1, 2, and 3. The corresponding pressure-coefficient distributions are 

shown in Fig. 3, We note that there is a great discrepancy between the IBL 

computations and t h e  Navier-Stokes results when grid 1 (corse grid) is used. 

The discrepancy is obvious downstream of the separation point. That 

prompted gr id refinements in the Navier-Stokes calculations. The results of 

the IBL computations are in good agreement with the results obtained using 

grids 2 and 3 almost everywhere except in the reattachment region. However, 
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the excellent agreement between the results obtained using grids 2 and 3, with 

grid 3 being the finer of the two, suggested that a further grid refinement may 

not result in an appreciable change in the reattachment region. And hence 

we proceeded with the stability analysis. 

We fixed the frequency o at a value of 80, and solved the eigenvalue 

problem for the wavenumber a. The mean flow was obtained by using the 1BL 

code or by using the ARC2D code using grids 1, 2, and 3. The growth rates 

( - a,) are shown in Fig. 4 as a function of R = & for the four sources of the 

mean flow. The corresponding N-factors are shown in Fig. 5 .  We note that the 

IBL results are far off from the results of grid 1 both for the growth rate and the 

N-factor. A dramatic improvement was obtained when the finer grids 2 and 3 

were used. Figure 5 shows that the IBL results are in better agreement with 

the results of grid 3 than with those of grid 2, especially upstream of the step. 

However, the IBL predicts N-factors in the reattachment region that are lower 

than those predicted by using the two grids. 

Next we decided to use a still finer grid in order to improve the agreement 

in the reattachment region. In grid 4 (176x153), we refined the grid notably in 

the x-direction, while the distribution in the y-direction was almost the same 

as in grid 3. In Fig. 6, we depict the friction coefficient distributions obtained 

by using the I6L code and the ARCZD code with grids 1, 2, 3, and 4. There is 

an obvious improvement in the agreement of the IBL and Navier-Stokes results 

in the reattachment region when grid 4 is used. In Fig. 7 we show the growth 

rates ( - a , )  obtained by using the IBL mean flow and the ARC2D code with 

grid 4. The N-factors are depicted in Fig. 8, they show considerable 

improvement in the agreement between the IBL computations and the 

Navier-Stokes computations using grid 4. 

A grid refinement study was also conducted at a Mach number of 0.8. The 

mean flow and stability results show trends similar to those fo.r the case of 

Mach number of 0.5. The growth rates predicted by using the IBL and N-S 

mean flows are depicted in Fig. 9 for a backward-facing 

Re = lo6,  = 0.8, and F = 5 0 ~ 1 0 - ~ .  The N-S mean flow 

grid 3. The corresponding N-factors are shown in Fig. 

step of h = - 0.003, 

is obtained by using 

10. The agreement 
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between the two methods of obtaining the mean flow is good. For more 

details. we refer the reader to Ref. 8. 

We conclude that for the purpose of the stability analysis of boundary 

layers over smooth surface imperfections, which might induce small 

separation bubbles, the interacting boundary-layer formulation is a viable 

alternative to the Navier-Stokes equations. 

V. Effects of Mach Number 

Using interacting boundary-layer mean flow computations, we present in 

Figs. 11 and 12 the pressure coefficient and skin-friction coefficient, 

respectively, for a backward-facing step of h = - 0.003, Re = l o 6 ,  and 

Mm = 0.0, 0.5, and 0.8. It is evident in Fig. 12 that increasing the Mach number 

increases the streamwise extent of the separation region. For each Mach 

number, we determined the most amplified frequency, that is, the frequency 

which results in the highest N-factor. For M, = 0.0, 0.5, and 0.8, the 

corresponding frequencies are (60, 55, and 50) x respectively. The 

growth rates and N-factors are shown in Figs. 13 and 14, respectively. As 

expected, the maximum growth rate is reduced by compressibility, but 

because of the increase in the separation region with increasing Mach 

number, the growth rate in the reattachment region is higher for high Mach 

numbers. Although the maximum N-factor is reduced by increasing the Mach 

number, the N-factor at the end of separation is practically equal for the three 

Mach numbers. The increase in the separation region offsets the stabilizing 

effects of compressibility. 

. .  
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Figure Captions 

Figure I. A typical computational grid. 

Figure 2. Influence of grids on the skin-friction coefficient for Adm = 0.5 and Re 

3 NS (GRID2), and ... - 1 IBL, - - - 2 NS (GRIDl), -- = 1.Ox106: 

4 NS (GRIDS). 

Figure 3. Influence of grids on the pressure coefficient for M, = 0.5 and 

Re = 1 .0x106: - 1 IBL, - - - 2 NS (GRIDl), -- 3 NS (GRID2), and 

... 4 NS (GRID3). 

Figure 4. Influence of grids on the growth rates for n/l, = 0.5 at Re = 1 . 0 ~ 1 0 ~  

and F = 8 0 ~ 1 O - ~  : - 1 IBL, - - - 2 NS (GRIDl), -- 3 NS (GRID2), 

and ... 4 NS (GRID3). 

Figure 5. Influence of grids on the N-factor for M, = 0.5 at Re = 1 .Ox1 O6 and F 
= 80~10-~ : - 1 IBL, - - - 2 NS (GRIDl) ,  -- 3 NS (GRID2), and ... 

4 NS (GRID3). 

Figure 6. Comparison of the skin-friction coefficient calculated by using 

interacting boundary layers with those calculated by using the 

Navier-Stokes solver and different gr id refinements for Moo = 0.5 and 

Re = 1 .Ox1O6: - 1 IBL, - - - 2 NS (GRIDl), -- 3 NS (GRID2), ... 4 

NS (GRID3), and --- 5 NS (GRID4). 

Figure 7. Comparison of the growth rates based on the profile calculated by 

using the interacting boundary layer code with those based on the 
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profile calculated by using the Navier-Stokes solver with the finest 

1 IBL and grid for Mm = 0.5 , Re = 1.0x106, and F = 8 0 ~ 1 0 - - ~  : - 
-- -  2 NS (GRID4). 

Figure 8. Comparison of the N-factors based on the profile calculated by using 

the interacting boundary layer code with those based on the profiles 

calculated by using the Navier-Stokes solver with different grid 

refinements for Mm = 0.5 , R e  = 1.0x106, and F = 8 0 ~ 1 0 - ~  : - 1 IBL, 

- - - 2 NS (GRIDl), -- 3 NS (GRIDZ), ... 4 NS (GRID3), and --- 
5 NS (GRID4). 

Figure 9. Comparison of the growth rates based on the profile calculated by 

using the interacting boundary layer code with those based on the 

profile calculated by using the Navier-Stokes solver with the finest 

grid for Moo = 0.8 , R e  = 1.0x106, and F = 5 0 ~ 1 0 - ~  : - IBL, and 

- - -  NS (GRlD4). 

Figure I O .  Comparison of the N-factors based on the profile calculated by 

using the interacting boundary layer code with those based on the 

profile calculated by using the Navier-Stokes solver with the finest 

IBL and grid for Mm = 0.8 , Re = 1.0x106, and F = 5 0 ~ 1 0 - ~  : - 
-- -  NS (GRID4). 

Figure 11. Influence of Mach number on the pressure coefficient at Re = 

Mm = 0.8 . --- 1 .OX~ O6 : - M, = 0.0, - - - M, = 0.5 , and 

Figure 12. Influence of Mach number on the skin-friction coefficient at Re = 

Mm = 0.8 . --- Mm = 0.0, - - - M, = 0.5 , and 1 .Ox106 : - 
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Figure 13. Influence of Mach number and most dangerous frequency on the 

growth rates for Re = 1 .0~10~ :  - M, = 0.0 and F = 6 0 ~ 1 0 - ~ ;  

M, = 0.5 and F = 5 5 ~ 1 0 - ~ ;  and ---Mea = 0.8 and F --- 
= 50x1 O-6. 

Figure 14. Influence of Mach number and most dangerous frequency on the 

N-factors for Re = 1 .Ox1O6: - Ad, = 0.0 and F = 60x10-? --- 
M, = 0.8 and F = 5 0 ~ 1 0 - ~ .  - - -  M, = 0.5 and F = 5 5 ~ 1 0 - ~ ;  and 
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